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Phase transitions in a ferrofluid at magnetic-field-induced microphase separation

D. Lacoste and T. C. Lubensky
Department of Physics, University of Pennsylvania, Philadelphia, Pannsylvania 19104-6396

~Received 20 March 2001; published 24 September 2001!

In the presence of a magnetic field applied perpendicular to a thin sample layer, a suspension of magnetic
colloidal particles~ferrofluid! can form spatially modulated phases with a characteristic length determined by
the competition between dipolar forces and short-range forces opposing density variations. We introduce
models for thin-film ferrofluids in which magnetization and particle density are viewed as independent vari-
ables and in which the nonmagnetic properties of the colloidal particles are described either by a lattice-gas
entropy or by the Carnahan-Starling free energy. Our description is particularly well suited to the low-particle-
density regions studied in many experiments. Within mean-field theory, we find isotropic, hexagonal and stripe
phases, separated in general by first-order phase boundaries.
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I. INTRODUCTION

Ferrofluids are suspensions of ferromagnetic partic
with a diameter of about 10 nm in a carrier fluid. The pa
ticles are stabilized against aggregation by coating with po
mers for oily ferrofluids or with charged surfactant for aqu
ous ferrofluids. On macroscopic scales, ferrofluids can
described as superparamagnetic liquids@1#. The application
of a magnetic field perpendicular to a thin layer induces
crophase separation in a homogeneous aqueous or oily
rofluid with no surfactant and leads to the formation of
periodic lattice of unbranched@2,3# or branched@4# concen-
trated phase columns. In thin layers of ferrofluid confin
together with an immiscible nonmagnetic liquid, the colum
can merge into sheets@5#, and at a higher field, the shee
evolve into a disordered labyrinthine structure@1#. In pure
ferrofluids and in ferrofluid emulsions, only the hexagon
phase of columns has been reported@6#. Similar periodic
structures have been observed in other physical systems
as Langmuir monolayers@7#, magnetic garnet thin films@8#,
or type I superconductors@9#, as discussed by Seul an
Wolfe @10#. In all these systems, there is a spontaneous
tial modulation of an order parameter, which can be eit
the concentration or the magnetization of the particles, o
combination thereof. The period of the modulation is det
mined by the competition between long-range dipolar for
and short-range forces favoring constant density. It depe
on the magnetic field and the thickness of the sample laye
discussed in a recent study on the aggregate size and sp
formed in a thin film of ferrofluid@11#.

This paper concerns the thermodynamic stability and p
tern formation in a suspension of ferromagnetic particles
carrier fluid in the presence of a magnetic field applied p
pendicular to the sample layer. We formulate models for t
films of these suspensions in which particle concentra
and magnetization, determined by the degree of alignmen
magnetic moments as well as particle concentration,
treated as independent variables. We discuss two pos
models for the entropy of the fluid, the lattice gas model a
the Carnahan-Starling model@12#. Although the Carnahan
Starling model has already been used for magnetic flu
@13#, it has not been used to describe transitions from a
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ordered to an ordered phase in ferrofluids. Our lattice mo
is essentially identical to that of Sano and Doi@14# except
that we consider the complete wave-number dependenc
interactions rather than the infinite wave-number limit app
priate to needlelike magnetic domains. Several previ
studies, including those of Andelmanet al. @7# and Cebers
@15,16#, are based on Landau expansion of a lattice-
model in the vicinity of the liquid-gas critical point prese
in the absence of the long-range part of the dipolar inter
tions. The free energies of these models are even-order
pansions up to fourth order in the deviation of the local de
sity ~which includes the modulated and spatially unifor
components! from the liquid-gas critical density. Our mode
free energy is in principle valid for arbitrary values of th
spatially uniform part of the particle density. We place
restrictions on the spatially uniform components of the d
sity, but we do expand the free energy in a power serie
the spatially varying component of the density. The entro
of the lattice-gas model is invariant under (f2 1

2 )→2(f
2 1

2 ), wheref is the volume fraction of ferrofluid particles
The Carnahan-Starling entropy possesses no such symm
As a result, its phase diagram, as we shall see, is more as
metric than that of the lattice-gas model, and its interest
features occur atf,1/2. We investigate the phase diagram
of our model within mean-field theory in which modulate
hexagonal and stripe phases are described by sine w
with wave numbers of a fixed magnitude. Our results are
qualitative agreement with those of Cebers@15,16# and of
Halsey@17# but differ from them in detail, particularly in the
low-density regions in which nonmagnetic interactions a
best described by the Carnahan-Starling free energy.

II. HELMOLTZ FREE ENERGY

The magnetic particles are assumed to have a sphe
ferromagnetic core of radiusa, coated by a sheath of surfac
tant d. Due to steric hindrance, the particles cannot co
closer than a distanced52(a1d). Each particle of the fer-
rofluid is a magnetic single domain of magnetic moment

m05
4p

3
a3Msm0 , ~1!
©2001 The American Physical Society06-1
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D. LACOSTE AND T. C. LUBENSKY PHYSICAL REVIEW E64 041506
whereMs is the saturation magnetization of the bulk mater
and m0 is the magnetic permeability of the vacuum. T
volume of the particles isv05pd3/6. It is assumed that the
suspension is monodisperse and that each particle carrie
same magnetic moment. We definem(r ) to be the ratio of
the average magnetic moment divided bym0, so that 0<m
<1, andf(r ) to be the volume fraction of the ferrofluid a
point r . We treat the particles as hard spheres, and we
clude only magnetic dipolar interaction beyond hard sph
repulsion.

The total free energyF of the ferrofluid in a magnetic
field breaks up into four main contributions: the free ene
of independent magnetized particles in a magnetic fi
Fm(m,f), the dipolar interaction energyEdip(m,f), the en-
tropic contribution of the hard spheres fluid, and the ene
cost associated with deviations off from spatial uniformity
Fnu(f)5kBTLA*d2r (¹f)2/(2v0). In this last term,L is the
thickness of the slab andA is a parameter with units of th
square of a length, independent of the magnetic field, wh
is related to the structure factor at low scattering angle@18#.
In the absence of a magnetic field,A is negative for an hard
sphere fluid@19#. As will become clear later, there are n
stable long wavelength stripes ifA is negative. We therefore
assume in this paper thatA is positive, either because of loca
field contributions or because of attractive interactions.

We have used two different forms of the entropy: t
entropy of a gas on a lattice, which has the following fo
per site

s~f!5f ln f1~12f!ln~12f!, ~2!

and the entropy

s~f!5fF ln f1f
423f

~211f!2G ~3!

of a Carnahan-Starling fluid@12#. In the absence of furthe
interactions, the free energies2kBTs(f) of these models
are convex, and their equilibrium stable phase is a sin
phase fluid with spatially uniformf. As can be seen from
Eqs.~2! and ~3!, the entropy of the lattice model is an eve
function of f20.5, whereas the entropy of the Carnaha
Starling fluid does not have this symmetry. The functionFm
follows from a Langevin approach@see Appendix A for the
derivation#,

Fm

kBT
5

L

v0
E d2rf@ f m~m!2mh#, ~4!

with

f m~m!5mL21~m!2 lnH sinh@L21~m!#

L21~m!
J , ~5!

with L21 denoting the inverse of the Langevin function. T
second term in Eq.~4! is the energy of the dipoles in th
magnetic fieldh and the first term, the functionf m(m), rep-
resents the rotational entropy of the dipoles. In Eq.~4!, we
have introduced
04150
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Hm0

kBT
, ~6!

which is a unitless measure of the external magnetic fieldH.
The dipolar interaction energy~in SI units! can be written

generally as

Edip5
m0

2

8pm0
(
a,b

ma
i mb

j S 2¹ i¹ j

1

ura2rbu D , ~7!

wherei and j are Cartesian coordinates, andma (mb) is the
dimensionless magnetic moment of the particle located at
point ra (rb). Sincema represents an angular average of t
dipole moment, it is directed along thez axis, which is taken
to be the direction of the applied magnetic field. In the fo
lowing, we will assume thatma5maez is independent of the
z coordinate. In a continuous description of the mediu
which will be discussed in the next section, the local ma
netization is

M ~r !5m0m~r !
f~r !

v0
, ~8!

wherem(r ) is the coarse-grained unitless magnetic mom
at r . Inserting this equation into the continuum limit of E
~7! gives

Edip

kBT
5

l̃L

2v0
E d2rd2r 8f~r !f~r 8!m~r !m~r 8!g~r ,r 8!, ~9!

wherel̃ is a measure of the dipole-dipole interaction,

l̃524l,

with

l5
m0

2

4pm0d3kBT
5

m0Ms
24pa6

9d3kBT
, ~10!

wherel is the parameter introduced by de Gennes and P
cus@21#. The two-dimensional~2D! Fourier transform of the
function g(r ,r 8) present in Eq.~9! is defined as

g~r ,r 8!5E d2q

~2p!2
g~q!eipq•(r2r8). ~11!

It depends only onq5uqu and it takes the form

g~q!5
1

qL
@12exp~2qL!#2

1

3
, ~12!

which can be interpreted as the dipolar part of the pair c
relation function@21,8#. The first term in Eq.~12! is the
long-range contribution of the interaction, which tends to
the demagnetizing factor of a film asq→0 and to 0, the
demagnetizing factor of a needle asq→`. The second term
is the short-range contribution due to the local field induc
by the surrounding magnetic dipoles. In this geometry wh
the applied magnetic field is perpendicular to the sam
6-2
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PHASE TRANSITIONS IN A FERROFLUID AT . . . PHYSICAL REVIEW E 64 041506
layer, the dipoles are parallel to each other and perpendic
to the plane of the layer. The attraction between dipoles
the head-to-tail configuration no longer appears in Eq.~12!
because of the integration over the thickness of the sam
implicit in the derivation of Eq.~9!. Note that g(q50)
52/3 is positive. This means that the total free energy
always stable with respect to spatially uniform fluctuations
f. When q→`, g(q) tends to the limit21/3 determined
entirely by local fields. It is the fact thatg(q) becomes nega
tive for qL greater than a critical value that makes any tra
sition from the spatially uniform state possible. In the a
sence of local fields,g(q) would be strictly positive at any
finite q, so there would be no equilibrium spatially mod
lated phases.

Finally the Gibbs free energyF ~for a chemical potentia
m) can be expressed in terms of dimensionless lengths u
the length AA and the transformationsr→AAr and q
→q/AA. The resulting dimensionless free energyf
5(Fv0)/(kBTAL) is

f 5E d2r H f~r !@ f m„m~r !…2m~r !h2m#1s„f~r !…

1
1

2
@¹f~r !#2J

112lE d2rd2r 8g~r ,r 8!f~r !f~r 8!m~r !m~r 8!,

~13!

where the Fourier transform ofg(r ,r 8) is given by Eq.~12!
with q replaced byq/AA. Thus,g(q) as a function of the
dimensionlessq is a function ofql, wherel 5L/AA.

III. DETERMINATION OF THE PHASE DIAGRAM

We first look at a spatially uniform state of the ferroflui
This state of the ferrofluid corresponds to a minimum of
total free energyf at m5m̄ andf5f̄. It is obtained from the
equations

] f

]m
50 and

] f

]f
50. ~14!

The first of these equations yields

m̄5L~he!,

with

he5h224lg~0!f̄m̄. ~15!

The second equation determiningf̄ must in general be
solved numerically. It can however be solved exactly for
lattice-gas model. The result is

f̄5
1

11exp~2m!he /sinh~he!
. ~16!
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Equations~15! and ~16! reproduce the main results of th
model of Sano and Doi@14# and Cebers@15# for a spatially
uniform ferrofluid, wheng(0) is replaced byg(q→`) in
Eq. ~15!. In our problem, however,g(0) is always positive
so that there is no instability toward the formation of coe
isting homogeneous phases.

Spatially nonuniform configurations can be studied by e
panding the free energy differenceD f (f,m)5 f (f,m)
2 f (f̄,m̄) in powers ofdm5m(r )2m̄ and df5f(r )2f̄.
The quadratic part of this free energy differenceD f quad has
a simple form in terms of the 2D Fourier transformdm(q)
anddf(q),

D f quad5E d2q

~2p!2 F1

2
r 11udm~q!u21

1

2
r 22udf~q!u2

1r 12dm~q!df~Àq!G , ~17!

with

r 5S 24lg~q!f̄21 f m9 ~m̄!f̄ 24lg~q!m̄f̄

24lg~q!m̄f̄ 24lg~q!m̄21s9~f̄ !1q2D .

~18!

The coefficientr 22 is the most important term determining
what values ofl transitions occur, and it is worth investiga
ing it in more detail. As already discussed,g(q) decreases
monotonically from 2/3 to21/3 asq increases from 0 tò .
Sinceq2 grows monotonically withq, 24lg(q)m̄21q2 has a
minimum at q5q* . When q* l @1, g(q);1/ql21/3, and
q* can be evaluated analytically,

q* 5F12l

l
L2~he!G1/3

. ~19!

The only negative term inr 22 is 2l/3 coming from the local
field term ing(q). Thus, we can write in general that

r 22~q* !58m̄2~lc2l!, ~20!

where

lc5
1

8m̄2
@3q* 21s9~f̄ !#, ~21!

when q* l @1. From this, we can see that the system b
comes unstable to the formation of modulated phases al
grows.

The spatially uniform phase becomes globally unsta
with respect to the formation of modulated phase when
determinantJ(q)5r 11(q)r 22(q)2r 12

2 (q) of the matrix in Eq.
~18! evaluated at its minimum overq becomes negative. A
significant simplification of the theory results when fluctu
tions in m are effectively frozen out, which occurs atm̄51
when f m9 (m̄)5`. In this ideal limit, onlyf varies spatially
in modulated states, and the stability of the uniform state
determined entirely byr 22(q) rather than byJ(q). As long as
6-3
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D. LACOSTE AND T. C. LUBENSKY PHYSICAL REVIEW E64 041506
r 11(q).0, an effective theory in terms offq alone can be
obtained by integrating over fluctuations inm. Removingm
will lead to renormalization of the coefficients of (df)n for
all n, as shown in Appendix B. The term withn52 is the
most important for the determination of the phase diagra
Its value in the effective theory is

r ~q!5r 22~q!2
r 12

2 ~q!

r 11~q!
'r 22~q!2

@24lg~q!m̄#2f̄

f m9 ~m̄!
,

~22!

where the later form is valid provided thatf m9 (m̄)@8lf̄.
The second term in this equation leads to a small shift inq* ,
the most unstable wave number from its value determined
r 22(q) alone @Eq. ~19! for q* l @1#, and to a small shift in
lc , the critical value ofl. These shifts are small whenm̄ is
sufficiently close to 1. For instance, forl50.578, l 51000,
andf̄50.5, the second term is much smaller than the first
at least two orders of magnitude forh.14.2, which corre-
sponds tom̄.0.9. This is verified in particular at the critica
field for the transition to the modulated phases, which occ
in this case ath521.5 andm̄50.94.

For more general values ofl however,r 11 can in fact
become negative. Unliker 22(q), r 11(q) has no stabilizingq2

term in the current theory. As a result, it reaches its m
mum value of@ f m9 (m̄)28lf̄#f̄ at q5`. Thus if f m9 (m̄)

,8lf̄, r 11 is negative for a range ofq and J(q) will be
negative forr 22.0. This would indicate an instability to
ward a phase with very short wavelength modulations. Si
our theory does not treat short wavelength physics in de
we will consider only situations in whichr 11 is positive. In
this case, an effective theory in terms offq alone can be
constructed by integrating over fluctuations inm.

In constructing phase diagrams in theh-f̄ plane, we have
used the two models discussed above: model 1 in which
fluctuations inm are ignored, and model 2 in which they a
included. Both models treat only terms up to fourth order
fq . Our theory in terms off only is very much in the spirit
of the single order parameter theory of Cebers@15,16#, ex-
cept for the shifts discussed above inq* andlc , which arise
when fluctuations inm are included. We assume for simplic
ity that modulated phases are described by Fourier com
nents with reciprocal lattice vectors of the smallest poss
magnitude. Higher Fourier components undoubtedly can
come important particularly near the hexagonal-to-str
transition. The effects of these higher Fourier compone
which are best treated using real spaceAnsätze, will be
treated elsewhere. The free energy of the different phase
the following:

~1! The isotropic phase with Helmoltz free energy

f iso5212lg~0!f̄2m̄22 lnS sinhhe

he
D f̄1s~f̄ !. ~23!

~2! The stripe phase with a free energy
04150
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f s5 f iso1
1

4
rfq

21usfq
4 . ~24!

In model 1, the stripe phase corresponds to a modula
df(r )5fqcos(q*y), and the coefficients in Eq.~24! are r

5r 22(q* ) and us5s(4)(f̄)/64. In model 2, the stripe phas
is characterized by df(r )5fqcos(q*y) and dm(r )
5mqcos(q*y). The coefficientsr 5r (h,f̄) of Eq. ~22! andus
of Eq. ~B5! evaluated atq* must be used.

~3! The hexagonal phase with a free energy

f hex5 f iso1
3

4
rfq

21vfq
31uhfq

4 . ~25!

In model 1, the hexagonal phase corresponds to a modula
df(r )5( i 51

3 fqcos(qi•r1d i) with uqi u5q* and ( i 51
3 qi

50. The coefficients in Eq.~25! are r 5r 22(q* ), v
5s(3)(f̄)/4, anduh515s(4)(f̄)/64. In model 2, the hexago
nal phase corresponds to a modulation of this type for b
df and dm, and the coefficientsr 5r (q* ), v, and uh are
given by Eqs.~22!, ~B12!, and~B13!.

A few comments about the general properties of our m
els are useful. Whenv(h,f̄) is zero, the free energy of th
stripe phase is lower than that of the hexagonal phase as
be seen by minimizing Eqs.~24! and ~25! over fq . The
energy density of the stripe phase at its minimum overfq

tends to zero asr 2, as r→0 for r ,0. Thus, atf̄5f̄c and
h5hc , determined byv(hc ,f̄c)50 andr (hc ,f̄c)50, there
is a second-order mean-field transition from the isotropic
the stripe phase@25#. When v(h,f̄) becomes nonzero, th
hexagonal phase has lower free energy than the stripe p
at small but nonzeror. Thus, there will in general be a tran
sition from the isotropic to the hexagonal phase away fr
f̄c , and the isotropic, stripe, hexagonal, and stripe pha
will meet at the pointf̄5f̄c , h5hc . This is indeed the
topology obtained in previous calculations@15–17#. The
lattice-gas entropy is invariant underc5(f2 1

2 )→2c, and
it, therefore, only has even-order terms in a power se
expansion inc about c50. Thus s(3)(f̄5 1

2 )50 and the
critical point in model 1 will occur atf̄c51/2. The
Carnahan-Starling entropy has no reflection symmetry,
in model 1 s(3)(f̄c)50 at f̄c50.1304. The nonentropic
terms in the total free energy are not invariant underc→
2c. The result is a slight asymmetry in the phase diagr
for the Carnahan-Starling model aboutf̄c . In model 2,f̄c
andhc can only be determined by the numerical solution

v(hc ,f̄c)50 andr (hc ,f̄c)50. In our calculations, we find
that this solution is in general close to the value obtained
model 1.

For a given value of the dipolar interaction parameterl
and the thicknessl, the critical point is characterized by
critical volume fractionf̄c and a critical fieldhc . In model
1, f̄c depends on the entropy only and is thus independen
the magnetic field, ofl, and ofl. The critical fieldhc on the
other hand, does depend on the value ofl and l. In Fig. 1,
6-4
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the evolution ofhc in model 1 is shown as a function ofl for
the lattice model in~a! and for the Carnahan-Starling mod
in ~b!. Both figures correspond to the choice of a finite thic
ness of the layerl 51000. The critical fieldhc changes
slightly as a function of the thickness, in this regime of lar
thickness whereq* l @1. A critical field exists only whenl
is above a minimum value, which is 0.57 in the case of
lattice model and 2.68 in the case of the Carnahan-Star
model. If l is smaller than these limits, there are no equil

FIG. 1. Dimensionless critical fieldhc as a function of the di-
mensionless magnetodipolar interaction parameterl. Both dia-
grams correspond to the case of model 1 and the choice of a fi
thickness of the layerl 51000. In~a! the lattice model and in~b! the
Carnahan-Starling model have been used. A critical field exists o
whenl is above a minimum value, which is 0.57 in the case of
lattice model and 2.68 in the case of the Carnahan-Starling mo
Notice that the critical fieldhc tends to a finite limiting value a
infinite value ofl, which is 9.1 in the case of the lattice model a
11.32 for the Carnahan-Starling model.
04150
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rium modulated phases. Notice also that the critical fieldhc
tends to a finite limiting value whenl is arbitrary large,
which is 9.1 in the case of the lattice model and 11.32 for
Carnahan-Starling model. These lower bounds on the crit
field are not zero, since there can be no modulated phas
zero field in this model as noted before.

Figure 2 presents phase diagrams obtained by minimiz
the free energy for the different phases. In these diagra
the spinodal lineJ(q* )50 is dashed and the coexisten
lines are solid. Figure 2~a! is the phase diagram for model

ite

ly
e
el.

FIG. 2. Phase diagram in the (h,f̄) plane whereh is the dimen-

sionless magnetic field andf̄ is the average volume fraction of th
ferrofluid. S stands for stripe phase,H for hexagonal phase, andI
for uniform phase. Solid lines represent coexistence lines and
dashed line is the spinodal.~a! This diagram was obtained forl
50.578, l 51000 with model 1 and using the entropy of a gas on
lattice of Eq. ~2!. ~b! This diagram was obtained forl53, l
51000 with model 2 and using the entropy of a fluid followin
Carnahan-Starling equation of Eq.~3!.
6-5
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for l50.578 andl 51000 of a system with the lattice-ga
entropy of Eq.~2!, whereas Fig. 2~b! is the phase diagram fo
model 2 forl53 andl 51000 of a system with the entrop
of a Carnahan-Starling fluid@12#, defined in Eq.~3!. In the
vicinity of the critical point, all phases are present: the u
form phase~I! ~liquid on one side and gas on the other sid!,
the hexagonal phase~H! ~direct hexagonal on one side an
inverted hexagonal on the other!, and the stripe phase (S).
Figure 2~a! has a lot in common with the phase diagra
obtained by Andelmanet al. @7# for Langmuir films and by
Cebers for ferrofluids@16# with some important differences
In contrast to the phase diagram of Andelmanet al., we find
that at high values of the magnetic field~which corresponds
to the magnitude of the electrostatic dipolar interaction
their case!, a ferrofluid of volume fraction close tof̄c50.5
has always periodic order. The disappearance of the s
and hexagonal phases in the phase diagram of Andelmaet
al. was due to the breakdown of the expansion of the f
energy away from the critical point. In agreement with p
dictions by Halsey@17# and Cebers@16#, we find that the
stable ordered phase of a ferrofluid at low concentrat
should be the hexagonal phase at low magnetic field and
stripe phase at higher magnetic field.

Figure 2~b! shows the phase diagram based on
Carnahan-Starling description of a liquid of hard spher
which is more accurate than the lattice-gas or the Van
Waals models. For this figure, a value ofl53 was chosen.
This is the estimated value for a monodisperse suspensio
magnetite particles withMs5446 kA m21, a57.4 nm and
d51 nm at room temperature. For these particles,h is equal
to 1 for a field of 52 G. The dimensionless lengthl is esti-
mated to be 1000, which corresponds to a modulation pe
of 1 mm, for L540mm and a magnetic fieldH5300 G.
This magnetic field is the theoretical critical magnetic fie
for microphase separation at a volume fraction of about 1
As l is increased further, the phase diagrams of Figs. 2~a!
and 2~b! are shifted to lower fields and the modulated pha
extend further away fromf̄c . Quantitative comparison be
tween theory and experiments require an estimate ofl,
which presuppose precise determination of particle size
low polydispersity, asl is proportional to the volume of the
magnetic particles.

In our model, we have found that the hexagonal phase
coexist with the uniform phase and the hexagonal phase
coexist with the stripe phase, but the stripe phase can
coexist with the uniform phase except at the critical poi
The size of the coexistence regions ofH1I andH1S have
been found in our calculations to be small for both the latt
model and the Carnahan-Starling model@typically of the or-
der of 0.01% –0.1% in volume fraction in Figs. 2~a! and
2~b!#. For higher values ofl, however, the width of the
coexistence region ofH1S becomes larger. In contras
Refs. @7# and @16# find rather large coexistence regions, f
both H1S and H1I, whose origin can be traced to the use
a power-law expansion of the free energy near a critical p
in terms of the uniform part of the particle volume fractio
rather than the full free energy in terms of this variable. B
very close to the critical point, our theory agrees with that
Refs.@7# and @16#.
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IV. CONCLUSION

In this paper, we have presented a picture of the
crophase separation and the formation of ordered phase
ferrofluids under a magnetic field using mean-field theo
and a model of hard spheres for the nondipolar interact
Within these hypotheses, we have shown that the attrac
part of the dipolar interaction due to the local field is respo
sible for the microphase separation. In our model, this
crophase separation is not possible at zero magnetic
however large the value ofl, in agreement with numerica
simulations on the dipolar hard sphere liquid by Stevens
Grest@22,23#. Of course this conclusion would be changed
a sufficiently strong isotropic attraction was added, as in
model of Sano and Doi@14#.

We have introduced a theory for phase transitions in p
ferrofluids based on two order parameters. At sufficien
high field, where the fluctuations of the magnetic moment
the particles are small, an effective theory based only on
volume fraction as an order parameter may be construc
At infinite magnetic field, the effective theory is identical
the theory based on a single order parameter. We have c
pared our approach with the work of Cebers@15,16# and
found essentially good agreement, with some differen
which have been discussed. In order to apply our mode
real ferrofluids, some knowledge of the stabilization intera
tion in ferrofluids due to the surfactant is needed. The m
eling of this non-dipolar part of the interaction might requi
more than a repulsive hard core, and this will modify t
condition of microphase separation and the character
length of the ordered phases. Thermodynamic measurem
found evidence for a critical liquid-gas transition in ferrofl
ids, but the precise form of the nondipolar interaction is s
not clear in these experiments@24#. Once the details of this
interaction are known, the next step towards a better co
parison with experiments will introduce polydispersity in th
model, which is of importance in the context of micropha
separation.
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APPENDIX A: DERIVATION OF THE FUNCTION f m„m…

Let f m(m) be the free energy per magnetized particle
produce a magnetic momentm. The one particle partition
function is

Z~h!5
1

4pE dV exp~h cosu!5
sinh~h!

h
, ~A1!

whereh has been defined in Eq.~6!. We definem to be the
angular average of the magnetic moment over all poss
orientations, so thatm5L(h). The free energy associate
6-6
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with the partition functionZ(h) is g(h)52kBT ln@Z(h)#.
The functionf m(m) is the Legendre transform ofg(h) with
respect tom: f m(m)5g(h)1mh. This implies

f m~m!5mL21~m!2 lnH sinh@L21~m!#

L21~m!
J , ~A2!

which is the result of Eq.~5!. Therefore by construction
f m(m) has the property that] f m /]m5h5L21(m). Close to
m50 the following Taylor expansion is useful:

f m~m!5
3

2
m21

9

20
m41O~m6!. ~A3!

Zhang and Widom have used the complete power serie
the functionf m(m) @20#. In generalm is not close to 0, and
Eq. ~A3! cannot be used but fortunately it is possible
calculate all the derivatives off m(m) analytically, For in-
stance,

f m9 ~m!5
]L21~m!

m

5
2L21~m!2

2L21~m!21L21~m!2coth2@L21~m!#21
.

~A4!

In the limit wherem→1, which corresponds to complet
alignment of the magnetic moment in the field, it is intere
ing to note thath.1/(12m) and f m9 .1/(12m)2.

APPENDIX B: EFFECTIVE FREE ENERGY OF THE
STRIPE AND HEXAGONAL PHASES

In this appendix, we give the expression of the free
ergy of the hexagonal and stripe phase as function ofmq and
fq , which are the amplitude of the spatial modulation of t
two order parametersf(r ) and m(r ). The results take a
simple form when two assumptions are made: it is assum
that the coefficient of themq

2 term r 11 is strictly positive and
that the spatial modulation off(r ) and m(r ) are in phase
with each other. With these assumptions, we derive the
fective theory forf only, when the fluctuations ofm have
been integrated. Up to fourth order infq and third order in
mq , the free energy of the stripe phase is

f s5 f iso1
1

2
r 11mq

21
1

2
r 22fq

21r 12mqfq1u1fqmq
31u2mq

2fq
2

1u3fq
4 . ~B1!

The coefficients of the quadratic part have already been
fined in Eq.~18!, the other coefficients are

u15
1

16
f m-~m̄!, ~B2!
04150
of

-

-

d

f-

e-

u253lg~0!1
3

2
lg~2q* !, ~B3!

u35
1

64
s(4)~f̄ !. ~B4!

Minimizing f s with respect tomq and reporting the resul
into Eq.~B1!, one obtains the free energy of Eq.~24!, which
contains the renormalized coefficientsr andus . The coeffi-
cient r has been defined in Eq.~22! andus is

us5u2t22u1t31u3 , ~B5!

with t5r 12/r 11. The free energy at its minimum is (f s)min
524r 2/us .

For the hexagonal phase, the same procedure results i
free energy

f hex5 f iso1
3

2
r 11mq

21
3

2
r 22fq

213r 12mqfq115u1fqmq
3

1ũ2mq
2fq

2115u3fq
41v1mq

2fq1v2mqfq
21v3mq

3

1v4fq
4 ~B6!

with

ũ2518lF3g~0!1g~A3q* !1
1

4
g~2q* !1g~q* !G , ~B7!

v15
3

4
f m-~m̄!136lf̄g~q* !, ~B8!

v2536lm̄g~q* !, ~B9!

v35
1

4
f m-~m̄!, ~B10!

v45
1

4
s(3)~f̄ !. ~B11!

The renormalized expression of the free energy of the h
agonal phase has been given in Eq.~25! in terms of the
renormalized coefficientsr , v, anduh with

v5v41v1t22v2t2v3t3, ~B12!

uh5215u1t3115u31
2v1v2t

3r 11
2

v2
2

6r 11
2

3v3
2t3

2r 11
1

2v3t3v1

r 11

1t2ũ22
v3v2t2

r 11
2

2v1
2t2

3r 11
. ~B13!

In the limit m→1, the renormalized coefficientsr ,uh ,v tend
to the value that these coefficients take in the simpler the
where the only order parameter isf. Indeedt.(m21)2, r
2r 22.(m21)2, v2v4.(m21)2, uh215u3.(m21)2,
6-7
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andus2u3.(m21)3. Note that Eq.~B12! implies that the
critical volume fractionf̄c , which is the solution of the
equationv5r 50, is now dependent on the magnetic fie
In the limit of very high field, the critical point should b
identical to the critical point of the theory withf as the only
order parameter.
nd

E.

sk

.

hy

04150
.

In general, we have found that the phase diagram c
structed from this effective theory is not very different fro
the phase diagram constructed with the theory based o
single order parameter. In the limit of infinite field, this e
fective theory becomes identical to the theory with a sin
order parameter~model 1!.
,
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