PHYSICAL REVIEW E, VOLUME 64, 041506
Phase transitions in a ferrofluid at magnetic-field-induced microphase separation
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In the presence of a magnetic field applied perpendicular to a thin sample layer, a suspension of magnetic
colloidal particles(ferrofluid) can form spatially modulated phases with a characteristic length determined by
the competition between dipolar forces and short-range forces opposing density variations. We introduce
models for thin-film ferrofluids in which magnetization and particle density are viewed as independent vari-
ables and in which the nonmagnetic properties of the colloidal particles are described either by a lattice-gas
entropy or by the Carnahan-Starling free energy. Our description is particularly well suited to the low-particle-
density regions studied in many experiments. Within mean-field theory, we find isotropic, hexagonal and stripe
phases, separated in general by first-order phase boundaries.
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[. INTRODUCTION ordered to an ordered phase in ferrofluids. Our lattice model
is essentially identical to that of Sano and Da#] except
Ferrofluids are suspensions of ferromagnetic particlethat we consider the complete wave-number dependence of
with a diameter of about 10 nm in a carrier fluid. The par-interactions rather than the infinite wave-number limit appro-
ticles are stabilized against aggregation by coating with polypriate to needlelike magnetic domains. Several previous
mers for oily ferrofluids or with charged surfactant for aque-studies, including those of Andelmaet al. [7] and Cebers
ous ferrofluids. On macroscopic scales, ferrofluids can b&l5,16, are based on Landau expansion of a lattice-gas
described as Superparamagnetic ||q|_nﬁ:$ The app"cation mOdel In the V|C|n|ty Of the |IQUId-gaS Cr|t|Ca| pOInt present
of a magnetic field perpendicular to a thin layer induces midn the absence of the long-range part of the dipolar interac-
crophase separation in a homogeneous aqueous or oily fdions. The free energies of these models are even-order ex-
rofluid with no surfactant and leads to the formation of aPansions up to fourth order in the deviation of the local den-
periodic lattice of unbranchel@,3] or branched4] concen-  Sity (which includes the modulated and spatially uniform
trated phase columns. In thin layers of ferrofluid confinedcomponentsfrom the liquid-gas critical density. Our model
together with an immiscible nonmagnetic liquid, the columnsfree energy is in principle valid for arbitrary values of the
can merge into sheef$], and at a higher field, the sheets spatially uniform part of the particle density. We place no
evolve into a disordered labyrinthine structjdd. In pure restrictions on the spatially uniform components of the den-
ferrofluids and in ferrofluid emulsions, only the hexagonalSity, but we do expand the free energy in a power series in
phase of columns has been reporféd Similar periodic the spatially varying component of the density. The entropy
structures have been observed in other physical systems sugh the lattice-gas model is invariant undeg € 3)— — (¢
as Langmuir monolayel&], magnetic garnet thin filmgs], —1), where ¢ is the volume fraction of ferrofluid particles.
or type | superconductorf9], as discussed by Seul and The Carnahan-Starling entropy possesses no such symmetry.
Wolfe [10]. In all these systems, there is a spontaneous spas a result, its phase diagram, as we shall see, is more asym-
tial modulation of an order parameter, which can be eithefmetric than that of the lattice-gas model, and its interesting
the concentration or the magnetization of the particles, or &atures occur ap<1/2. We investigate the phase diagrams
combination thereof. The period of the modulation is deter0f our model within mean-field theory in which modulated
mined by the competition between long-range dipolar forcedi€xagonal and stripe phases are described by sine waves
and short-range forces favoring constant density. It dependdith wave numbers of a fixed magnitude. Our results are in
on the magnetic field and the thickness of the sample layer s@ualitative agreement with those of Ceb¢is,16 and of
discussed in a recent study on the aggregate size and spacifglsey[17] but differ from them in detail, particularly in the
formed in a thin film of ferrofluid 11]. low-density regions in which nonmagnetic interactions are
This paper concerns the thermodynamic stability and patPest described by the Carnahan-Starling free energy.
tern formation in a suspension of ferromagnetic particles in a
carrier fluid in the presence of a magnetic field applied per- Il. HELMOLTZ FREE ENERGY
pendicular to the sample layer. We formulate models for thin . ) )
films of these suspensions in which particle concentration "€ magnetic particles are assumed to have a spherical
and magnetization, determined by the degree of alignment Jerromagnetic core of radius coated by a sheath of surfac-
magnetic moments as well as particle concentration, arknt 8. Due to steric hindrance, the particles cannot come
treated as independent variables. We discuss two possibféoser than a distanag=2(a+ 6). Each particle of the fer-
models for the entropy of the fluid, the lattice gas model and©fluid is @ magnetic single domain of magnetic moment
the Carnahan-Starling modgL2]. Although the Carnahan-
Starling model has already been used for magnetic fluids 4m 1)

_ 3
. . . . my=—a°M ,
[13], it has not been used to describe transitions from a dis- 0 3 sko

1063-651X/2001/641)/0415068)/$20.00 64 041506-1 ©2001 The American Physical Society



D. LACOSTE AND T. C. LUBENSKY PHYSICAL REVIEW E64 041506

whereM is the saturation magnetization of the bulk material Hmg

and uo is the magnetic permeability of the vacuum. The h=17" (6)
volume of the particles is,=7d>/6. It is assumed that the .

suspension is monodisperse and that each particle carries tigich is a unitless measure of the external magnetic field

same magnetic moment. We defingr) to be the ratio of The dipolar interaction energyn Sl unit9 can be written
the average magnetic moment dividedry, so that Gsm  generally as

=<1, and¢(r) to be the volume fraction of the ferrofluid at

point r. We treat the particles as hard spheres, and we in- _ mS E - 1
cludelz _only magnetic dipolar interaction beyond hard sphere Edip_gT,MO “~ m,mg| = ViV |fa—fﬁ| ' @)
repulsion.

The total free energy of the ferrofluid in a magnetic wherei andj are Cartesian coordinates, am (mp) is the
field breaks up into four main contributions: the free energydimensionless magnetic moment of the particle located at the
of independent magnetized particles in a magnetic fielghointr,, (rz). Sincem, represents an angular average of the
Fm(m,¢), the dipolar interaction enerdy,(m, #), the en-  dipole moment, it is directed along tlzeaxis, which is taken
tropic contribution of the hard spheres fluid, and the energyo be the direction of the applied magnetic field. In the fol-
cost associated with deviations ¢ffrom spatial uniformity  lowing, we will assume thatn,=m,e, is independent of the
Fru(#) =kgTLASd?r(V $)?/(2v,). In this last termL isthe  z coordinate. In a continuous description of the medium,
thickness of the slab andl is a parameter with units of the which will be discussed in the next section, the local mag-
square of a length, independent of the magnetic field, whichetization is
is related to the structure factor at low scattering afg&.

In the absence of a magnetic fielis negative for an hard _ (1)

sphere fluid[19]. As will become clear later, there are no M(r)—mom(r)v—o, ®
stable long wavelength stripesAfis negative. We therefore

assume in this paper thatis positive, either because of local wherem(r) is the coarse-grained unitless magnetic moment
field contributions or because of attractive interactions.  atr. Inserting this equation into the continuum limit of Eq.

We have used two different forms of the entropy: the(7) gives
entropy of a gas on a lattice, which has the following form
per site Edip

AL
T Z_J d?rd?r’ ¢p(r)(r’)ym(rym(r')g(r,r’), (9)
B Uo
S(p)=¢Inp+(1—-¢)In(1-¢), 2

whereX is a measure of the dipole-dipole interaction,
and the entropy

4—34 =24\,
S(¢)=¢[|n P+ ¢m @ with
of a Carnahan-Starling fluifiL2]. In the absence of further B mj _ oM 24ma’
interactions, the free energieskgTs(¢) of these models A= 47T,uod3kBT_ 9d3kgT ' (10

are convex, and their equilibrium stable phase is a single-

phase fluid with spatially uniformg. As can be seen from where\ is the parameter introduced by de Gennes and Pin-
Egs.(2) and(3), the entropy of the lattice model is an even cus[21]. The two-dimensional2D) Fourier transform of the
function of ¢—0.5, whereas the entropy of the Carnahan-functiong(r,r’) present in Eq(9) is defined as

Starling fluid does not have this symmetry. The functigp

follows from a Langevin approadsee Appendix A for the d?q . L
derivatior, g(f,f’)=f 5g(qe ™), 11
(2m)
If_"_;_: LJ d2r [ f,.(m)—mh], (4)  Itdepends only om=|q| and it takes the form
B Vo
[ = ! 1 L ! 12
with 9(0)= grli-ex—aL)l-3, (12
f(m)=mL =X (m)—In sinf{ £ *(m)] 5) which can be interpreted as the dipolar part of the pair cor-
m £-Ym) relation function[21,8]. The first term in Eq.(12) is the

long-range contribution of the interaction, which tends to 1,
with £~ denoting the inverse of the Langevin function. Thethe demagnetizing factor of a film ag—0 and to 0, the
second term in Eq(4) is the energy of the dipoles in the demagnetizing factor of a needle @s-~. The second term
magnetic fieldh and the first term, the functiofy,(m), rep-  is the short-range contribution due to the local field induced
resents the rotational entropy of the dipoles. In &}, we by the surrounding magnetic dipoles. In this geometry where
have introduced the applied magnetic field is perpendicular to the sample
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layer, the dipoles are parallel to each other and perpendicul&quations(15) and (16) reproduce the main results of the
to the plane of the layer. The attraction between dipoles itmodel of Sano and Ddil4] and Ceber$15] for a spatially
the head-to-tail configuration no longer appears in @@  uniform ferrofluid, wheng(0) is replaced byg(gq—) in
because of the integration over the thickness of the samplgg. (15). In our problem, howeverg(0) is always positive
implicit in the derivation of Eq.(9). Note thatg(q=0) so that there is no instability toward the formation of coex-
=2/3 is positive. This means that the total free energy idgsting homogeneous phases.

always stable with respect to spatially uniform fluctuations in ~ Spatially nonuniform configurations can be studied by ex-
¢. Wheng—=, g(q) tends to the limit—1/3 determined panding the free energy differencAf(¢,m)=f(¢p,m)
entirely by local fields. It is the fact that(q) becomes nega- —f(¢,m) in powers ofdSm=m(r)—m and ¢ = ¢(r) — .

tive for gL greater than a critical value that makes any tran-The quadratic part of this free energy differente,,q has

sition from the Spatlally uniform state pOSSibIe. In the ab'a Simp|e form in terms of the 2D Fourier transfomn(q)
sence of local fieldsg(q) would be strictly positive at any and s¢(q),

finite g, so there would be no equilibrium spatially modu-

lated phases. d’q
Finally the Gibbs free energly (for a chemical potential fquad= f 2

u) can be expressed in terms of dimensionless lengths using (2m)

the length JA and the transformations— Ar and q

—q/JA. The resulting dimensionless free enerdy +f125m(Q)5¢(—Q)}, 17

=(Fvg)/(kgTAL) is

1 2, 1 2
§r11|5m(Q)| +§r22|6¢(q)|

with

r= - — — .
1 , 24ng(q)m¢ 24ng(q)m*+5"($) + 0
+50Ve(1)] 18

The coefficient ,, is the most important term determining at
+ 12)\f d?rd?r’g(r,r")p(r)p(r’"ym(rym(r’), what values of\ transitions occur, and it is worth investigat-
ing it in more detail. As already discussegl,q) decreases
(13)  monotonically from 2/3 to-1/3 asq increases from 0 te.
Sinceg? grows monotonically withg, 24xg(g)m?+ g2 has a
minimum atq=qg*. Whenqg*I>1, g(q)~1/ql—1/3, and
g* can be evaluated analytically,

where the Fourier transform gf(r,r’) is given by Eq.(12)
with q replaced byg/A. Thus,g(q) as a function of the
dimensionlessj is a function ofql, wherel =L/ /A.

12\ 1/3
|7 p2
I1l. DETERMINATION OF THE PHASE DIAGRAM q* = | L (he)} : (19)

We first look at a spatially uniform state of the ferrofluid. 1o only negative term in,, is — \/3 coming from the local
This state of the ferrofluid corresponds to a minimum of thegig g term ing(q). Thus, we can write in general that

total free energy atm=m and$ = ¢. It is obtained from the

equations roAq*)=8m’(\c—\), (20)
of o q of o 4 where
%— an %— . ( ) .
_ *2 R
The first of these equations yields 7‘0_852[3(1 +s'(¢)], (21)
ﬁ=£(he), when g*I>1. From this, we can see that the system be-
comes unstable to the formation of modulated phases as
with grows.
- The spatially uniform phase becomes globally unstable
he=h—24\g(0)¢m. (15  with respect to the formation of modulated phase when the

determinant](q):rll(q)rzz(q)—rfz(q) of the matrix in Eq.
The second equation determining must in general be (18) evaluated at its minimum over becomes negative. A
solved numerically. It can however be solved exactly for thesignificant simplification of the theory results when fluctua-
lattice-gas model. The result is tions inm are effectively frozen out, which occurs =1
B 1 yvhenf;;](ﬁ):oo. In this ideal Iimit,_gnlyq') varies_ spatially .
b= _ _ (16) in modglated s.tates, and the stability of the uniform state is
1+exp(— pu)he/sinh(he) determined entirely by,,(q) rather than byl(q). As long as
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r;1(q)>0, an effective theory in terms ab, alone can be 1, s
obtained by integrating over fluctuations fim Removingm fs=fisot 7 g+ Usdy - (24
will lead to renormalization of the coefficients od¢)" for

all n, as shown in Appendix B The term with=2 is _the In model 1, the stripe phase corresponds to a modulation
most important for the determination of the phase dlagram5¢(r):¢ cos@*y), and the coefficients in Eq24) arer
q )

Its value in the effective theory is —
y =r,(q*) andug=s“)(¢)/64. In model 2, the stripe phase

is characterized by 5¢(r)=pqcos@*y) and om(r)

2 a2 _
(@ =t — 2D - [24g(@m]*¢ —m,cost*y). The coefficients =r (h, $) of Eq. (22) andu,
ri1(q) £ (m) ’ of Eq. (B5) evaluated at/* must be used.
(22) (3) The hexagonal phase with a free energy
- 3
where the later form is valid provided th&f,(m)>8\ ¢. fhe= fisot Zr¢§+u¢>3+ Undbg - (25)

The second term in this equation leads to a small shiff*in
the most unstable wave number from its value determined b
r,»(q) alone[Eg. (19 for g*I>1], and to a small shift in
\¢, the critical value of\. These shifts are small when is
sufficiently close to 1. For instance, far=0.578,1= 1000,

Yn model 1, the hexagonal phase corresponds to a modulation
Sp(r) =27 pqcos@-r+8) with |g=g* and =% ,q

=0. The coefficients in EQ.(25 are r=ry(q*), v
=sC)(p)/4, andu,,= 155 ()/64. In model 2, the hexago-

and$=0.5, the second term is much smaller than the first by . .
’ . . nal phase corresponds to a modulation of this type for both
at least two orders of magnitude for>14.2, which corre- 5¢ and om. and the coefficients=r(q*), v, andu, are

sponds tan>0.9. This is verified in particular at the critical given by Eqs(22), (B12), and (B13).
field for the transition to the modulated phases, which occurs A few comments about the general properties of our mod-

in this case ah=21.5 andm=0.94. . els are useful. When(h, ¢) is zero, the free energy of the
For more general values of however,ry; can in fagt stripe phase is lower than that of the hexagonal phase as can

become negative. Unlike,»(q), r11(q) has.no stablllzmgq __be seen by minimizing Eq€24) and (25) over ¢,. The

term in the current theory. As a result, it reaches its mini-energy density of the stripe phase at its minimum over

mum value of[f;(m)—8\¢]¢ at g==. Thus if f.(M)  tends to zero as?, asr—0 for r<0. Thus, atep= ¢ and

<8\ ¢, ry, is negative for a range aj and J(q) will be  h=h_, determined by (h.,$.)=0 andr(h,,$:)=0, there
negative forr;,>0. This would indicate an instability to- s a second-order mean-field transition from the isotropic to
ward a phase with very short wavelength modulations. Sincgqe stripe phasg25]. When o (h g) becomes nonzero. the
our theory does not treat short wavelength physics in deta”hexagonal phase hés lower fre’e energy than the strip’e phase
we will consider onl_y situations_ in whichy, is positive. In at small but nonzero. Thus, there will in general be a tran-
this case, an e_ffectlve.theory n termspg a}lone can be sition from the isotropic to the hexagonal phase away from
constructed by integrating over fluctuationsnm — . . . .

. . _ — ¢, and the isotropic, stripe, hexagonal, and stripe phases

In constructing phase diagrams in thep plane, we have ) L= = o

used the two models discussed above: model 1 in which th\é"” meet at the po!nt¢= ¢.C’ h=h.. Th_|s is indeed the
fluctuations inm are ignored, and model 2 in which they are topplogy obtained !N _previous CaICUIat'mﬁf"S_lﬂ' The
included. Both models treat only terms up to fourth order inlattice-gas entropy is invariant undge=(¢—z)——4, and
¢q . Our theory in terms ofp only is very much in the spirit  * therefore, only has even-order tsefms \n & power series
of the single order parameter theory of Cebfis,16, ex-  €xpansion ings about y=0. Thuss®(¢=3)=0 and the
cept for the shifts discussed abovegih and\ ., which arise  critical point in model 1 will occur at¢.=1/2. The
when fluctuations imm are included. We assume for simplic- Carnahan-Starling entropy has no reflection symmetry, and
ity that modulated phases are described by Fourier comp@n model 1 s®)(¢.)=0 at ¢.=0.1304. The nonentropic
nents with reciprocal lattice vectors of the smallest possiblg@erms in the total free energy are not invariant unges
magnitude. Higher Fourier components undoubtedly can be-;; The result is a slight asymmetry in the phase diagram

come important particularly near the hexagonal—to—stripefor the Carnahan-Starling model aboag. In model 2’50

transmon. The effects of th.ese higher Fourler cor_nponentsand h. can only be determined by the numerical solution of
which are best treated using real spakesdze will be

treated elsewhere. The free energy of the different phases apdhe "7,50) =0 gnd_r(hc,¢c) =0. In our calculations, we find
the following: that this solution is in general close to the value obtained for

(1) The isotropic phase with Helmoltz free energy model 1. _ _ _
For a given value of the dipolar interaction parameter

and the thickness, the critical point is characterized by a
$+s(¢p). (23  critical volume fractiong. and a critical fieldn.. In model

1, ¢ depends on the entropy only and is thus independent of
the magnetic field, ok, and ofl. The critical fieldh. on the
(2) The stripe phase with a free energy other hand, does depend on the value\adndl. In Fig. 1,

—— sinhh
fiso= — 122g(0) p?m?— In(—h °
e
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FIG. 1. Dimensionless critical fieltl; as a function of the di- FIG. 2. Phase diagram in thé (@) plane wherdh is the dimen-

mensionless magnetodipolar interaction paramaterBoth dia-
grams correspond to the case of model 1 and the choice of a fini

thickness of thg laydr=1000. In(a) the lattice quel and it) Fhe for uniform phase. Solid lines represent coexistence lines and the
Carnahan-Starling model have been used. A critical field exists onl¥ialshed line is the spinodala) This diagram was obtained for
when\ is above a minimum value, which is 0.57 in the case of the=0.578 | = 1000 with model 1 and using the entropy of a gas on a
lattice model and 2.68 in the case of the Carnahan-Starling mOdeIIattice c;f Eq. (2). (b) This diagram was obtained fox=3, |
Notice that the critical fielch, tends to a finite limiting value at —1000 with model 2 and using the entropy of a fluid foII’owing
infinite value of\, which is 9.1 in the case of the lattice model and Carnahan-Starling equation of E@).

11.32 for the Carnahan-Starling model.

sionless magnetic field arﬁ is the average volume fraction of the
t%rrofluid. S stands for stripe phasé] for hexagonal phase, arld

rium modulated phases. Notice also that the critical freld
the evolution ot in model 1 is shown as a function kffor ~ tends to a finite limiting value whei is arbitrary large,
the lattice model ifa) and for the Carnahan-Starling model which is 9.1 in the case of the lattice model and 11.32 for the
in (b). Both figures correspond to the choice of a finite thick- Carnahan-Starling model. These lower bounds on the critical
ness of the layel=1000. The critical fieldh. changes field are not zero, since there can be no modulated phases at
slightly as a function of the thickness, in this regime of largezero field in this model as noted before.
thickness wherg*I>1. A critical field exists only when Figure 2 presents phase diagrams obtained by minimizing
is above a minimum value, which is 0.57 in the case of thehe free energy for the different phases. In these diagrams,
lattice model and 2.68 in the case of the Carnahan-Starlinthe spinodal lineJ(q*)=0 is dashed and the coexistence
model. If\ is smaller than these limits, there are no equilib-lines are solid. Figure(2) is the phase diagram for model 1
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for A=0.578 andl=1000 of a system with the lattice-gas IV. CONCLUSION
entropy of Eq(2), whereas Fig. @) is the phase diagram for

model 2 forA =3 andl =1000 of a system with the entropy In this paper, we have presentgd a picture of the mi—.
of a Carnahan-Starling fluifL2], defined in Eq(3). In the crophase separation and the formation of ordered phases in

vicinity of the critical point, all phases are present: the uni-f€rofluids under a magnetic field using mean-field theory
form phase(l) (liquid on one side and gas on the other 3jde @nd a model of hard spheres for the nondipolar interaction.
the hexagonal phas@) (direct hexagonal on one side and Within these hypotheses, we have shown that the attractive
inverted hexagonal on the otheand the stripe phases).  part of the dlpo!ar interaction due_to the local field is respon-
Figure Za) has a lot in common with the phase diagramsible for the microphase separation. In our model, this mi-
obtained by Andelmaet al. [7] for Langmuir films and by ~crophase separation is not possible at zero magnetic field
Cebers for ferrofluid$16] with some important differences. however large the value of, in agreement with numerical

In contrast to the phase diagram of Andelneral, we find ~ Simulations on the dipolar hard sphere liquid by Stevens and
that at high values of the magnetic figldhich corresponds Grest[22,23. Of course this conclusion would be changed if
to the magnitude of the electrostatic dipolar interaction in2 Sufficiently strong isotropic attraction was added, as in the

their casg a ferrofluid of volume fraction close t¢.=0.5 model of Sano and Dqil4]. . .
has always periodic order. The disappearance of the strip We have introduced a theory for phase transitions in pure

and hexagonal phases in the phase diagram of Andehan errofluids based on two order parameters. At sufficiently
al. was due to the breakdown of the expansion of the fre@igh field, where the fluctuations of the magnetic moment of

energy away from the critical point. In agreement with pre-the particles are small, an effective theory based only on the

dictions by Halsey[17] and Ceber$16], we find that the volume fraction as an order parameter may be constructed.
stable ordered phase of a ferrofluid ,at low concentratiorﬁo‘t infinite magnetic field, the effective theory is identical to

should be the hexagonal phase at low magnetic field and '[hté1e theory based on a s_ingle order parameter. We have com-
stripe phase at higr?er ma%netic field. g pared our approach with the work of Ceb¢d®,16 and

Figure 2b) shows the phase diagram based on thefound essentially good agreement, with some differences

Carnahan-Starling description of a liquid of hard spheres/Nich have been discussed. In order to apply our model to

which is more accurate than the lattice-gas or the Van derl,eal ferrofluids, some knowledge of the stabilization interac-
Waals models. For this figure, a valueof 3 was chosen tion in ferrofluids due to the surfactant is needed. The mod-

This is the estimated value for a monodisperse suspension 81“”9 of this non-dipolar part of the interaction might require

magnetite particles witM =446 KAm %, a=7.4 nmand '€ than a repulsive hard core, and this will modify the

5= mat room temperatur. For these patdescqual  £onaiion of mictophase separaton ana e characterte
to 1 for a field of 52 G. The dimensionless lengtls esti- 9 P : y

mated to be 1000. which corresponds to a modulation erioI]c)und evidence for a critical liquid-gas transition in ferroflu-
of 1 um, for L=4’O,um and a r%agnetic fieldH = 300 g ids, but the precise form of the nondipolar interaction is still

| ol i " . .. not clear in these experimert&4]. Once the details of this
This magnetic field is the theoretical critical magnetic field. .

. X X interaction are known, the next step towards a better com-
for microphase separation at a volume fraction of about 1%,

C . : parison with experiments will introduce polydispersity in the
As \ is increased further, the phase diagrams of Figa) 2 S : . :
and Zb) are shifted to lower fielgs and thegmodulatedg;)%asem()del’ which is of importance in the context of microphase

— o ] %eparation.
extend further away from.. Quantitative comparison be-
tween theory and experiments require an estimatex of
which presuppose precise determination of particle size and
low polydispersity, aa is proportional to the volume of the The authors gratefully acknowledge stimulating discus-
magnetic particles. sions with A. G. Yodh and M. Islam. We thank A. Cebers for
In our model, we have found that the hexagonal phase caa careful reading of the manuscript. This work was supported
coexist with the uniform phase and the hexagonal phase can part by the MRSEC program under Grant No. NSF
coexist with the stripe phase, but the stripe phase cann@MR00-79909. D.L. received support by a grant from the
coexist with the uniform phase except at the critical point.French Ministry of Foreign Affairs.
The size of the coexistence regionstbf-1 andH + S have
been found in our calculations to be small for both the |a.tticeAppEND|X A: DERIVATION OF THE FUNCTION fm(m)
model and the Carnahan-Starling mofigpically of the or-
der of 0.01%-0.1% in volume fraction in Figs(a? and Let f,(m) be the free energy per magnetized particle to
2(b)]. For higher values of\, however, the width of the produce a magnetic moment. The one particle partition
coexistence region oH+S becomes larger. In contrast, function is
Refs.[7] and[16] find rather large coexistence regions, for )
both H+S and Hr1, whose origin can be traced to the use of Z(h) = 1 J’ _ sinh(h)
. o . (h)=—{ dQ exphcosh)= ,
a power-law expansion of the free energy near a critical point A7 h
in terms of the uniform part of the particle volume fraction
rather than the full free energy in terms of this variable. Butwhereh has been defined in E¢6). We definem to be the
very close to the critical point, our theory agrees with that ofangular average of the magnetic moment over all possible
Refs.[7] and[16]. orientations, so tham=L(h). The free energy associated

ACKNOWLEDGMENTS

(A1)

041506-6



PHASE TRANSITIONS IN A FERROFLUID A . .. PHYSICAL REVIEW E 64 041506

with the partition functionzZ(h) is g(h)=—kgT In[Z(h)]. 3
The functionf,(m) is the Legendre transform gf(h) with uz=3rg(0)+ E)\g(Zq*), (B3)
respect tam: f,,(m)=g(h) +mh. This implies
. _ _i s
sinff £~ Y(m)] Us=5;S " (¢). (B4)

fm(m)zm[,l(m)—ln[ ] (A2)

£7Ym) _— _ :
Minimizing fs with respect tom, and reporting the result

which is the result of Eq(5). Therefore by construction Nt Eq.(B1), one obtains the free energy of Eg4), which

f..(m) has the property thatf,,/om=h=£"1(m). Close to  contains the renormalized coefficiemsindus. The coeffi-

m=0 the following Taylor expansion is useful: cientr has been defined in E@2) andus is

3 9 Ug=Uot2—ut3+ug, (B5)
fm(m)==m?+ —m*+0(m°). (A3)
2 20 with t=2r12/r11. The free energy at its minimum i) in
) . =—4rus.
Zhang and Widom have used the complete power series of For the hexagonal phase, the same procedure results in the
the functionf,,(m) [20]. In generaim s not close to 0, and  free energy
Eq. (A3) cannot be used but fortunately it is possible to

calculate all the derivatives df,,(m) analytically, For in- 3 , 3 ) 5
stance, fhex= fiso Erllmq+ §r22¢q+ 3r1oMggt 15u1¢’qmq
71 ~
o m):&ﬁ (m) +UpMG i+ 15U3 g+ 0 1MG g+ v oMy e+ v M
+oadg (B6)
_Efl(m)Z "
= . wit
— £ Ym)?+ £ (m)%cotF[ £~ 1(m)]—1
(A4)

~ 1
U,= 18\ 3g(0)+9(V3q*) +79(20%) +9(a*)|, (B7)
In the limit wherem—1, which corresponds to complete

alignment of the magnetic moment in the field, it is interest- 3., — —
ing to note thah=1/(1—m) and f/=1/(1—m)2. v1=7fm(m)+36\ dg(q*), (B8)
APPENDIX B: EFFECTIVE FREE ENERGY OF THE v,=36Amg(q*), (BY)
STRIPE AND HEXAGONAL PHASES
In this appendix, we give the expression of the free en- v :Efm(a) (B10)
ergy of the hexagonal and stripe phase as functiompénd 3T m Tl

¢q, Which are the amplitude of the spatial modulation of the

two order parameterg(r) and m(r). The results take a 1 @) =
simple form when two assumptions are made: it is assumed Va=7S"(¢).
that the coefficient of thmé termr 44 is strictly positive and

that the spatial modulation ap(r) andm(r) are in phase The renormalized expression of the free energy of the hex-
with each other. With these assumptions, we derive the efagonal phase has been given in EB5) in terms of the
fective theory for¢ only, when the fluctuations ah have  renormalized coefficients, v, anduy, with

been integrated. Up to fourth order i, and third order in

(B11)

mq, the free energy of the stripe phase is v=v4tvt2—vot—vat3 (B12)
1 1 200t vs 3uit® 20.t3
fs=Tfisot Erllm§+ 5fzz¢>§+rlzmq¢q+u1¢qm§+u2m§¢§ up=—15u,t3+ 15us+ﬁ— Fjl_ 2"311 %
+U3¢3- (B1) vav,t? 2032
+tzag_ 2 - 3 : . (Blg)
F11 Fi1

The coefficients of the quadratic part have already been de-

fined in Eq.(18), the other coefficients are In the limit m— 1, the renormalized coefficientsuy, ,v tend

to the value that these coefficients take in the simpler theory
where the only order parameterds Indeedt=(m—1)?, r
—rp=(m—1)?, v—v,=(m—1)?, up—15uz=(m—1)?

1 _
Uy=2gfm(m), (82)
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andug— uz=(m—1)3. Note that Eq(B12) implies that the In general, we have found that the phase diagram con-
critical volume fractiongc, which is the solution of the Structed from this effective theory is not very different from
equationv =r=0, is now dependent on the magnetic field. the phase diagram constructed with the theory based on a
In the limit of very high field, the critical point should be single order parameter. In the limit of infinite field, this ef-
identical to the critical point of the theory wit#y as the only ~ fective theory becomes identical to the theory with a single
order parameter. order parametefmodel 1.
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